

Calcium Ion, a Putative Intracellular Messenger for Light-Adaptation in *Limulus* Ventral Photoreceptors*

J. E. Brown

Department of Physiology and Biophysics, Suny, Stony Brook, NY 11794, USA, and Marine Biological Laboratory, Woods Hole, MA 02543, USA

Abstract. Calcium ion fulfills several criteria for identifying an intracellular messenger for light-adaptation in *Limulus* photoreceptors. Direct injection of Ca⁺⁺ mimicks two aspects of light-adaptation; sequestration of intracellular calcium tends to prevent light-adaptation; and light induces an increase in intracellular Ca⁺⁺ as demonstrated by two independent techniques.

Key words: Calcium – Limulus – Photoreceptors – Adaptation.

Intracellular ionized calcium (Ca⁺⁺_{in}) has been proposed to be the natural intracellular messenger for light-adaptation in *Limulus* ventral photoreceptors (Lisman and Brown, 1971). Four lines of evidence support this hypothesis.

- (1) Membrane currents evoked by light (light-induced currents) can be measured by a voltage-clamp technique. After bright illumination, the voltage-clamp currents induced by test flashes become attenuated and have shorter latency; that is, the sensitivity of the photoreceptor is reduced and the time-scale of the photoreceptor response is shortened. As the photoreceptor progressively dark adapts the sensitivity increases and the time-scale becomes longer. Direct iontophoretic injection of Ca⁺⁺ into a voltage-clamped photoreceptor progressively both reduces the sensitivity and shortens the time-scale; after the injection, both the sensitivity and time-scale progressively recover. Therefore, direct injection of Ca⁺⁺ mimicks these two aspects of light-adaptation (Brown and Lisman, 1975).
- (2) The intracellular injection of the calcium-sequestering agent EGTA (ethyleneglycol bis [β aminoethyl ether] N,N,N',N' tetraacetic acid) tends to abolish several aspects of light-adaptation. First, the injection of EGTA tends to prevent reduction of sensitivity (measured by responses to test flashes). Second, the injection of EGTA affects the waveform of the light-induced current. The current induced by a prolonged stimulus normally falls from an initial transient peak to a plateau value

^{*} Presented at the EMBO-Workshop on Transduction Mechanism of Photoreceptors, Jülich, Germany, October 4–8, 1976

J. E. Brown

maintained for the duration of the stimulus; that is, normally there is a delayed reduction of current/photon-flux during a prolonged stimulus. After injection of EGTA, the current induced by a prolonged stimulus tends to be square; the delayed reduction of current/photon-flux tends to be abolished. Third, intracellular EGTA changes the slope of the graph of light-induced current *versus* stimulus irradiance. Normally, an increment of irradiance superimposed on a low level of irradiance induces more photoreceptor current than does the same increment superimposed on a high level of irradiance. That is, the graph of light-induced current *versus* irradiance has higher slope with dimmer lights. The decrease of slope found with bright lights is another aspect of light-adaptation. After injection of EGTA, the slope of the graph of light-induced current *versus* irradiance tends not to decrease over a much wider range of irradiance. Thus, sequestering intracellular calcium tends to prevent light-adaptation (Lisman and Brown, 1975).

- (3) Illumination of a photoreceptor causes an increase in Ca⁺⁺_{in}. This increase has been demonstrated directly by the stimulus-induced increase of luminescence of aequorin injected intracellularly (Brown and Blinks, 1974). The light-elicited increase of Ca⁺⁺_{in} reaches a maximum after the peak of the receptor response and falls to a lower level during prolonged, bright illumination.
- (4) The transient increase of $Ca^{++}{}_{in}$ elicited during a prolonged, bright stimulus can also be detected using the metallochromic indicator dye, arsenazo III (2, 7 bis [o-arsonophenyl] azo 1,8 dihydroxy, 3,6 naphthalene disulfonic acid). In a strongly light-adapted photoreceptor, $Ca^{++}{}_{in}$ remains high for a long time. This has been shown by recording the absorption spectra of intracellular arsenazo III. The light-adapted minus dark-adapted difference spectrum of the intracellular dye has two maxima (at 610 nm and 660 nm) characteristic of dye-Ca binding. These double maxima are not seen with changes of either $Mg^{++}{}_{in}$ or intracellular pH. By comparing difference spectra recorded from single cells with calibration curves for Ca-dye binding, $Ca^{++}{}_{in}$ was found to exceed 10^{-4} M in strongly light-adapted cells (Brown et al., 1976).

Therefore, Ca⁺⁺_{in} satisfies several criteria for being the natural intracellular messenger for light-adaptation in *Limulus* ventral photoreceptors. Ca⁺⁺ is normally present inside the photoreceptors; it normally increases after illumination; direct intracellular injection of Ca⁺⁺ mimicks light-adaptation; and artificial sequestration of Ca⁺⁺_{in} tends to prevent light-adaptation. Nonetheless, at present there is neither sufficient quantitation of the above criteria nor sufficient evidence of biochemical machinery that normally sequesters or extrudes Ca⁺⁺_{in} to identify Ca⁺⁺_{in} as the intracellular messenger with certainty.

References

Brown, J. E., Blinks, J. R.: Changes in intracellular free calcium during illumination of invertebrate photoreceptors: detection with aequorin. J. gen. Physiol. 64, 643-665 (1974)

Brown, J. E., Brown, P. K., Pinto, L. H.: Detection of light-induced changes of intracellular ionized calcium concentration in *Limulus* ventral photoreceptors using arsenazo III. J. Physiol. (in press) 1976

Brown, J. E., Lisman, J. E.: Intracellular Ca modulates both sensitivity and time scale in *Limulus* with ventral photoreceptors. Nature (Lond.) 258, 252–253 (1975)

Lisman, J. E., Brown, J. E.: The effects of intracellular Ca²⁺ on the light response and on light adaptation in *Limulus* ventral photoreceptors. In: The visual system: Neurophysiology, biophysics and their clinical applications, (ed. G. B. Arden), pp. 23-33. New York: Plenum Press 1972
Lisman, J. E., Brown, J. E.: Effects of intracellular injection of calcium buffers on light adaptation in *Limulus* ventral photoreceptors. J. gen. Physiol. 66, 489-506 (1975)

Received November 5, 1976